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Abstract
TSP, the end-fixed TSP, and the path-constrained TSP, are proposed. T he corresponding approaches based on modified genetic algo-

Three kinds of constrained traveling salesman problems (TSP) arising from application problems, namely the open route

rithms (GA) for solving these constrained TSPs are presented. Numerical experiments demonstrate that the alyorithm for the open route
TSP showsits advantages when the open route is required, the algorithm for the end-fixed TSP can deal with route optimization with con

straint of fixed ends effectively, and the algorithm for the path-constraint could benefit the traffic problems where some cities cannot be

visited from each other.
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Traveling salesman problem (TSP) is one of the
most widely studied NP-hard combinatorial optimiza-
tion problems, which has links with many fields of
pure and applied mathematics. The TSP is to find the
traveling salesman’ s shortest tour to pass n cities in
such a way that each city is visited exactly once.
There exists an implicit condition in the TSP, that
is, any city can be visited from the others directly . So
the issue is equivalent to finding the shortest H amilto-
nian cycle within a complete simple graph. We refer
to this issue satisfying the above conditions as the
standard TSP. There exist many reports on solving
the standard TSP using different methodologied " .
The standard TSP can be used satisfactorily to solve
many real prototypes in science and engineering
fields. However, algorithms for standard TSP might
be invalid when constraints exists because their solu-
tions might violate the constraints. We refer to the
solution violating the constraints as an abnormal solu-
tion and the solution satisfying constraints as a feasi-
ble one. There exist various constrained TSPs in real
applications, for example, the vehicle-capacity-con-
strained TSP and the TSP with precedence con-
straints (TSPPC). The first constrained TSP can be
stated as: given the capacity of a vehicle, the task of
the vehicle is to transport some cargos among depots.

The TSPPC can be described as: there is an order im-

constrained traveling salesman problem genetic algorithm Hamiltonian path. open route fixed end.

posed on the vertices of the standard TSP where the
vertices should be visited and followed. These con-
strained TSPs can be applied to many industrial prob-
lems such as scheduling, routing decision, process se-
"% Moon et al. in [ 3]
proposed a genetic algorithm based on topology sort

quencing, and some others'’

which is defined as an ordering of vertices in a direct-
ed graph. Tannenbaum in [ 4], Kusiak et al. in [ 5]
and Savelsbergh et al. in [ 6] presented and summa-
rized some algorithms based on dynamic program-
ming. When these algorithms are used for solving
some concrete problems, they overcome some short-
comings of the standard TSP. However, compared
with the standard TSP, there is much less work on
constrained TSP besides those mentioned above. In
this paper we study three other kinds of constrained
TSPs and present the algorithm realization schemes.
When designing these algorithms for constrained
TSPs, we try to make very few modifications to the
standard GA-based TSP solving algorithms so that
readers who are familiar with the standard TSP could
use these proposed algorithms easily .

1 Traditional methods for standard TSP and
their limitations

For a standard TSP with n cities, there are at
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most n | Hamiltonian cycles when starting city and
tour direction are taken into account. There must ex-
ist a shortest one in these finite Hamiltonian cy cles.
With the rapid increasing of processing speed of com-
puters it seems that the TSP could be solved easily
with exhaustive search. However, it is impossible to
implement the enumeration when the number of cities
is large. Most methods based on exhaustive-enumera-
tion would encounter a size problem with increasing
dimensionality!?. The dimension issue forces people
to accept solutions obtained by heuristic or stochastic
algorithms. Genetic algorithm (GA) is an excellent
tool in global search, it has become the best choice to
solve the TSP and researchers have developed various
G A operations for the relevant problems. The GA-
based algorithm for the standard TSP presented in
Ref. [ 1] is used in this paper. For the standard
TSP, the traditional GA could obtain the reasonable
or the optimal solutions. M any real problems look like
the standard TSP at first glance, however, they
could not be solved by the traditional GA which could
result in abnormal solutions. For example, drilling on
a board in electronic industry expects a shorter
drilling route in order to improve productivity, save
power and prolong working life of tools. If the posi-
tions of the holes are arranged in a long and narrow
strip it would be better than an open route imple-
mented. In this case the traditional GA would be dis-
advantageous, although we could delete the longest
edge in the final cycle to form an open route. It could
be understood easily by referring to Figs. 1 and 2.
The traditional GA would mostly generate the result
The desirable solution for drilling
problem mentioned above is shown in Fig. 2, which

shown in Fig. 1.

is unlikely to be obtained from the route shown in
Fig. 1 by deleting one edge. Again, the traditional
GA would fail if the 3rd and 5th vertices must be
drilled first and last respectively. In this case the
drilling route shown in Fig. 3 would be the most de-
sirable one. In addition, as concerned in a traffic
problem as shown in Fig. 4, there are a lake betw een

Fig. 1. Mode of the standard TSP solution.

the 1st and 2nd city, aforest between the 1st and 5th
city and a private farm betw een the 2nd and 6th city.
The traditional GA would fail to give the feasible so-
lution shown in Fig. 4. From the above analysis, it
can be seen that the study on the constrained TSP
possesses both theoretical and practical significance.

7
Fig. 2 Mode of an open route TSP solution.
4
7
Fig. 3. Mode of the end-fixed TSP solution.
3
4
Private Farm
7

Fig. 4. Mode of the path-constrained TSP solution.

2 Some constrained TSPs and their algo-
rithms

In this section, we consider some constrained
TSP models and present the modified G A-based algo-
rithms for solving them. These constrained TSPs can

be summ arized as follows:

(i) Open route TSP. Tt is required to search a
Hamiltonian path in a complete simple graph with n
vertices. For this cases the goalis to find a solution as
shown in Fig. 2.

(i1) End-fixed TSP. It is required to search a
Hamiltonian path with fixed starting and ending ver-
tices in a complete simple graph with, n vertices. For
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this case, the goal is to find a solution as shown in

Fig. 3.

(iii) Path-constrained TSP. It is required to
search the shortest Hamiltonian cycle (or path) in a
non-complete simple graph. Solving this model would
benefit traffic problems. For this case, the goalis to
find the solution as shown in Fig. 4 in which the
route needs to detour to avoid the barriers such as the
lake, forest and private farm.

The commonly used objective and fitness func-
tions in G A-based algorithm for solving the standard
TSP are as follows:

obj (§) = d(Sn,s1)+2d(Si71,Si), (D
i=2

(S = 2

1
obj (S
where S is the individual in the GA population, s; the
ith gene in S and 7 the total number of cities (ver-
tices). The three algorithms proposed in this paper

for solving the constrained TSPs are:
(i) Algorithm for the open route TSP

Denote the algorithm as A1l. This algorithm
searches the shortest Hamiltonian path without fixed
starting and ending vertices. The individual is taken
as an open route which means that the starting is
from the first city and the ending is at the last city in
the individual string. It differs from a cycle in the
standard GA-based algorithm. For example, the indi-
vidual

2 1 758 3 6 49

represents a visiting sequence starting from city 2 to
city 1, from city 1 to city 7, --» from city 4 to city
9, and ending at city 9. The standard G A-based algo-
rithm requires the path from city 9 to city 2 to form a
complete cycle. To deal with the constrained TSP,
the modified GA-based algorithm only needs to
change the objective function (1) into

obj (§) = Zd(&'ﬂ, si). 2
i—2

Performing genetic operations iteratively, the solution
with the biggest fitness could approximate to the opti-
mum solution in the feasible solution space.

(i) Algorithm for the end-fixed TSP

Denote the algorithm as A2. This algorithm
searches the shortest Hamiltonian path with fixed
starting and ending vertices. The GA procedure is
modified as removing the starting and ending vertices

from the vertex set ¥V, and only encoding the rest
n—?2 vertices; or as calculating the objective function
using the following rule:

2
b (S) = d (s1 v+ dWe se2)+ D dsi1s s)n
i=2
4

where viand v, represent the numbers of starting and
ending vertices. From the above objective function, it
can be seen that although v, and v. do not participate
in the optimization, they actually affect the fitness of
each individual. So it is impossible for a “bad” indi-
vidual violating fixed vertices to get a relatively high
fitness. With the update of generations, the solution
with the best fitness in the current population could
approximate to the optimum solution in a feasible so-
lution space. If only one vertex is fixed, either it is
the starting or ending vertex, the algorithm is analog-
ical to that in the two-end-fixed case.

(iii) Algorithm for the path-constrained TSP

Denote the algorithm as A3. Some applications
may have path constraints as mentioned in Section 1,
i.e. there are no paths between some city pairs. The
hard measures to keep the solution feasible, for exam-
ple; examining each individual and replacing it with a
feasible solution if it violates constraints, would not
only increase the computation work, but also harm
the excellent gene pieces. Therefore, a soft measure
which overcomes these shortcomings by taking full
advantage of the Darwin’ s evolution rule, is proposed
in this paper. In addition, it could indicate the feasi-
bility of an individual conveniently .

Firstly the distance of each city pair needs to be
calculated as usual. Denote dmuw= max {dj}. If

1<
there is not a direct path between city i and city j,
then let djj=nX d 1 1. This modification ensures
that if certain individual contains city i directly con-
necting city j, its objective function value is larger
than nX dmaxs and its fitness function value is small-

. It is obvious that under the effect

1
of evolution rule the abnormal formal solution with

er than

fitness smaller than —L is deserted from the
nXd

max
current population. However, the third problem is e-
quivalent to searching Hamiltonian cycle in a non-
complete graph where the existence of the cycle is not
sure. If the fitness of the best individual in the last

, there is no feasi-

1
n X d rmax

generation is smaller than
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ble solution in the current population.

3 Numerical experiments

To demonstrate the validities of the above algo-
rithms, we perform the following numerical experi-

ments. The data randomly generated are used to sim-
ulate the city locations. The positions and optimal re-
sult obtained using the standard GA are shown in
Fig. 5. The parameters shown in Table 1 are used as
default values. The simulations are performed on a

PC with a 1600 MH z processor and 256 MB RAM.
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Fig. 5. Randomly generated data and optimal result using standard GA. (Initial length= 28503. 82, final length= 5063. 90).
Tabk 1. GA running parameters clustering. Algorithm A1 is employed here to perform
ltem  Crossover Mutation Chromasome P‘)p”fl'“m"“ Maximum the optimization. The average reducing rates in
probability probability  length size generation R
Tables 4, 5 and 6 indicate that the more complex the
Parameter 0. 8500 0. 0005 100 100 1000

Tables 2 and 3 show the five runs for algorithms
A1l and A2, respectively. The routes corresponding
to the optimization results are shown in Figs. 6 and
7, respectively. As far as the best open route is con-
cerned, the initial and optimal lengths are 22026. 82
and 4630. 79 by using algorithm A1, respectively;
and for algorithm A2, the corresponding results are
22850. 76 and 4823. 57, respectively. The average
reducing rates for algorithms A1 and A2 in 5 runs are
79.78% and 78.33%, respectively. In the tables the
reducing rates are calculated using the following equa-
tion:

Reducing rate— Initial 1engt.h.*0[)t1m1a1 leng th
Initial length

X 100%. 5

Numerical simulation results show that the constraint

of the fixed ends restricts the search for optimal solu-
tions however, in some real applications the use of
algorithm A2 could guarantee the feasibility of the so-
lution. Tables 4 ~6 and Figs. 8 ~10 show the exam-
ples where the vertices are distributed in some special
forms: narrow strip, regular clustering, and random

vertices distributed, the higher reducing rates could
be obtained by using algorithm A1. It indicates that
the algorithm has much potential in complicated ap-

plications.
Tabk 2. Results for the shortest Hamiltonian path without constrained
ends (AD)
Initial ~ Optimal Reducing Consumed End Route
length length rate (%6) time(s) vertices status
1 23416. 81 4684.14 80.00 1.52 22 100 Open
2 23711. 15 4707.84 79.90 2.60 9 16 Open
3 23218.75 4671.39 79.88 1.46 80 100 Open
4 23104.79 4657.06 79.84 2.30 41 65 Open
5 22026. 82 4630.79 78.98 1.36 93 100 Open
Average 23095.66 4670.24 79.78 1.85 — —
Table 3. Results for Hamiltonian path with constrained ends (A2)
Initial Optimal ~ Redudng Consumed Constrained Route
length length  rate (%) time(s) ends status
1 22361.20 4809.47 78.49 1.96 28 73 Open
2 22042.17 4880.03 78.18 1.84 28 73 Open
3 22850.76 4823.57 78.89 1.61 28 73 Open
4 21595.59 4878.69 77.41 2.09 28 73 Open
5 23096.90 4863.80 78.94  3.12 28 73 Open
Average 22389.32 4851.11 78.33  2.12 — —
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Fig. 6. Optimal Hamiltonian path without constrained vertices (A1). (Initial length=22026. 82, final length= 4630. 79).
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Fig. 7. Optimal Hamiltonian path with constrained ends (A2). (Initial length= 22850. 76, final length= 4823. 57).
Table 4. Results for Hamiltonian path in strip-like case (A1)

Initial ~ Optimal Reducing Consumed End  Route

length length mate (%) time(s) vertices status

1 2520.37 810.24  67.85 0.78 1 18 Open

2 2359.49 810.24  67.85 0. 94 1 18 Open

3 2712.14 826.85  69.51 0. 69 2 18 Open

4 2371.17 810.24  65.83 0. 65 1 18 Open

5 2624.65 810.24  69.13 0.95 1 18 Open
Average 2517.56 813.56 67.68 0. 80 — —

Table 5. Results for Hamiltonian path in regular clustering case (A1)

Initial ~ Optimal Reducing Consumed End Route

length length rate (%) time(s) vertices status

1 21312.88 3430.73 83.90 1.65 20 100 Open

2 16802. 84 3457.22 83.78 1.77 16 100 Open

3 23137.34 3401.32 85.30 2.58 13 100 Open

4 21574.87 3481.42 83.86 1.63 7 100 Open

5 18870. 87 3458.65 81.67 1.60 17 100 Open
Average 20339.67 3445.87 83.06 1.85 — —

Tabk 6.  Results for Hamiltonian path in random clustering case (A1)
Initial  Optimal Reducing Consumed FEnd  Route
length length rate (%) time(s) vertices status

1 24178.15 3637.87 84.95 1.27 3 100 Open
2 24210.97 3643.29 84.93 2.17 67 74 Open
3 24133.25 3683.33 84.74 2.71 47 12 Open
4 24885.21 3662.21 85.28 1.78 13 100 Open
5 24107.96 3704.18 84.64 1.42 31 52 Open
Average 24303.33 3666. 18 84.91 1. 87 — —
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Fig. 8.

Fig. 9.

Fig. 10.

Optimal Hamiltonian path for a strip case (A1). (Average initial length= 2517. 56, average fimal length= 813. 56).
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Fig. 11 shows the results obtained using algo-
rithm A3. From the figure it can be seen that cities
16, 17, 23, 24, 25, 26, 27, 29, 70 and 79 are rela-
tively closer to city 100. These cities are most likely
connected to city 100 directly. To demonstrate the

effectiveness of algorithm A3, we specify that they
cannot connect city 100 directly as listed in Table 7.
Fig. 11 shows that the results obtained using algo-
rithm A3 satisfy the isolating constraints quite well.

Fig. 11.

Table 7. City pairs without direct path to city 100
(16, 1000 (17, 1000 23, 1000 (24, 1000 (25, 100)

(26, 1000 (27, 1000 (29, 1000 (70, 1000 (79, 100)

4 Conclusions and discussions

This paper studies three kinds of constrained
TSPs which cannot be solved by making use of the
traditional GA for standard TSP. The objective func-
tion is designed to take full advantage in the process
of algorithm design, as it determines the individual
fitness according to the rule in the fitness calculation.
Simulations show that, among these proposed algo-
rithms, algorithm A1 could provide a better solution
if the open route is required and there are no fixed
ends algorithm A2 could deal with route with pre-
fixed ends effectively, and Algorithm A3 could give
an effective solution when either an open or closed

route is required in an incomplete graph, which

Optimal Hamiltonian cycle with isolated constraints (A3). (Initial length= 26290. 58 fimal length= 3923. 45, time=3.4 s).

would benefit the traffic problems in which there are
no direct paths between some cities.
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